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Abstract— Today, the Internet of Things (IoT) use to collect 

data by sensors, and store and process them. As the IoT has limited 

processing and computing power, we are turning to integration of 

cloud and IoT. Cloud computing processes large data at high 

speed, but sending this large data requires a lot of bandwidth. 

Therefore, we use fog computing, which is close to IoT devices. In 

this case, the delay is reduced. Both cloud and fog computing are 

used to increasing performance of IoT. Job scheduling of IoT 

workflow requests based on cloud-fog computing plays a key role 

in responding to these requests. Job scheduling in order to reduce 

makespan time, is very important in realtime system. Also, one 

way to improve system performance is to reduce energy 

consumption. In this article, three-objective Harris Hawks 

Optimizer (HHO) scheduling algorithm is proposed in order to 

reduce makespan time, energy consumption and increase 

reliability. Also, dynamic voltage frequency scaling (DVFS) has 

been used to reduce energy consumption, which reduces frequency 

of the processor. Then HHO is compared with other algorithms 

such as Whale Optimization Algorithm (WOA), Firefly Algorithm 

(FA) and Particle Swarm Optimization (PSO) and proposed 

algorithm shows better performance on experimental data. The 

proposed method has achieved an average reliability of 83%, 

energy consumption of 14.95 KJ, and makespan of 272.5 seconds. 

Keywords—Internet of Things; Cloud-Fog computing; Harris 

hawks optimization algorithm; Workflow scheduling; DVFS 

I. INTRODUCTION

The concept of IoT was first presented by Kevin Ashton [1] 
in 1999. Purpose of IoT is to collect environmental data through 
sensors and store and process them automatically [2,3]. IoT 
suffers from problems such as performance, security, privacy 
and reliability due to processing and storage power. Therefore, 
to solve these problems, we move towards cloud computing. 
Cloud computing processes huge amounts of data quickly and 

cheaply. To send this large data to the cloud, a lot of bandwidth 
is needed, and fog computing is used to solve this problem [4,5]. 
Like cloud computing, fog computing processes and stores data 
collected by sensors [6]. To reduce latency and network traffic 
volume in the cloud, data is temporarily processed and stored 
on network edge devices [7]. Fog computing has many 
advantages, including geographical distribution and large scale, 
lower operational costs, flexibility and heterogeneity and 
scalability, low latency [8]. In Fig. 1, cloud computing is first 
substrate, where cloud servers store and process large volumes 
of data. In next substrate, there is fog computing, which consists 
of fog machines. The bottom substrate contains the end devices 
of the IoT. Fog computing is a mediation between terminal 
devices and the cloud and it brings several services near to the 
terminal devices [8,26]. Each fog server is a virtual machine. 
To manage fog virtual resources, we use fog scheduling, which 
in addition to providing QOS, minimizes makespan, resource 
conception, and data transfer [18,19]. But scheduling jobs and 
workflow is an NP-hard problem [20]. Job scheduling in order 
to reduce makespan time, is very important in realtime system. 
Also, reducing the energy consumption improves system 
performance. 

Therefore, in this contribution, an optimal workflow 
scheduling method is presented using three-objective HHO 
algorithm. In this schedule, we considered factors of makespan 
time, reliability, and energy consumption. DVFS are used to 
decrease energy consumption. DFVS is a method to reduce 
energy consumption by reducing processor frequency [21,22]. 

This paper is organized as follows: part II will review the 
previous works, part III presents system model and formulated 
job scheduling problem, part IV presents our method based on 
HHO algorithm, in part V presented evaluations and compared 
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our proposed method with several Meta-Heuristic (MH) 
algorithms such as WOA, FA and PSO.  

The MH algorithms such as HHO [23], Artificial Bee 
Colony (ABC) [24], and Grasshopper Optimization Algorithm 
(GOA) [25] have been used to solve various problems. 

 

Fig. 1. Cloud-fog environment architecture[26] 

II. RELATED WORK 

      The authors in [9] have developed a hybrid optimization 
algorithm called AEOSSA in cloud-fog environment. This 
algorithm was a combination of two algorithms, AEO and SSA, 
and its purpose is to reduce throughput time and makespan time. 
Then AEOSSA is compared with four algorithms SSA and 
AEO, PSO, FA on the two mentioned criteria and has shown 
better performance. In [10], genetic algorithm (GA) was used 
to minimize overall latency to schedule IoT jobs in the cloud-
fog environment. The performance of GA has been better than 
that of Round Robin (RR), Priority-Strict Queuing (PSQ) and 
Wait-Fair Queuing (WFQ). techniques in reducing overall 
latency. The authors in [11] have created an optimal task 
offloading strategy for delay-sensitive and resource-sensitive 
programs in the cloud-fog environment, which uses the FA to 
reduce energy consumption and computational time. This 
method was compared with optimization algorithms such as 
PSO in terms of temperature emission, CO2 emission, energy 
consumption, and computational time, which has shown better 
performance. In [12], the Enhanced version of Multi-Verse 
Optimizer (EMVO) algorithm was presented for scheduling 
jobs in the cloud to achieve minimized makespan time and 
increase resources efficiency, and it was compared with two 
algorithms, MVO and PSO, which shown that the algorithm has 
a better performance. In [13], an optimization model using 
mixed integer programming for minimizing deadline misses of 
IoT tasks in the cloud environment using GA was introduced. 
Then the performance of GA was compared with priority 
scheduling and RR, which has shown better performance. In 
[14], a hybrid deep Q-learning task scheduling (DQTS) 
algorithm combining Q-learning and Artificial Neural Network 
(ANN) is presented for scheduling jobs in cloud. According to 
obtained results, the presented algorithm has less makespan and 

better load balance. The necessary requirements of fog 
computing that provides high-quality IoT services is efficient 
resource management. Job management and workflow are 
considered practical examples of resource management in fog 
computing environment for assigning a set of requested jobs to 
most suitable fog node [15-17]. None of the previous works 
have investigated the three parameters of Makespan time, 
reliability and energy consumption at the same time. 

III. SYSTEM MODEL 

A. System Model 

Cloud-fog architecture has three substrates, as represented 
in Fig. 1. The edge substrate receives user requests through IoT 
devices. Then it sends the information to the fog substrate, 
which has fog nodes. Fog nodes process user requests. In this 
architecture, it is the cloud top substrate that provides 
outsourcing resources to execute workflows derived from the 
fog substrate. There is a smart gateway or broker in the fog 
substrate, that receives user requests and manages resources 
available in cloud and fog nodes, processing and 
communication costs, and the search results of data return from 
nodes and create most suitable workflow scheduling [26]. 

B. Problem Formulation 

In this part, the formulation of the problem for job 
scheduling in cloud-fog is described. 

The cloud-fog system consist of a set of M heterogeneous 
virtual machines denoted by VM ={v1 ,v2, … . . ,vM}. Each v is 
physical processor that works in various frequency levels and 
voltage and is determined {SV, c, f} supply voltage, maximum 
processor processing capacity, and frequency level. 

The workflow is set of jobs, denoted by � and model by a 
Directed Acyclic Graph (DAG). J = {J1,J2, … . .,JN} illustrates 
a set of N  related jobs of workflow. E illustrates set of edges 
between jobs and is N*M. 

Each job consists of several instructions per million units to 
executed and a collection of predecessors and successors. As 
shown in Fig. 2, The entry job for DAG has Pred (J�����)=Ф 
and the exit job has Succ(J����)=Ф. Each edge ei,j Є E shows the 
graft between Ji and Jj , which has weight Wi,j, illustrates the 
amount of data need to be exchanged between job Ji and Jj 
[22,27].  

 

Fig. 2. DAG of workflow[27] 
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Each job is allocated to a VM with a special frequency. The 
execution time of job Ji allocated to 	
��  is represented by: 

(1) ET = �����
× 	
����	
��

 

In the equation: Ii−number of instructions that need to 
execute for Ji; ��� −maximum capacity of 	
  in MIPS; 	
���� −maximum frequency level for 	
; 	
�� −frequency level �� that has any value from � = ���, �!, … . . , �$% for 	
  . 

Now we use DVFS to reduce energy consumption by 
reducing frequency [16]. 

DVFS is a mechanism that decreases energy consumption 
by reducing the CPU frequency level of VM and uses a 
powerful management technique to decrease energy 
consumption and high reliability. To maintain reliability. It uses 
a powerful management technique to decrease energy 
consumption and high reliability [16]. 

IV. PROPOSED METHOD BASED ON HARRIS HAWKS 

OPTIMIZATION 

HHO is a population-based MH algorithm. MH algorithms 
mimic natural phenomena [28]. MH algorithms include two 
phases: exploration and exploitation. To schedule jobs, we use 
the three-objective HHO algorithm to minimizing makespan 
and energy consumption and increasing reliability. A candidate 
solution in the optimization problem was considered for each 
hawk [28].  

�&'()**+',
= -&(�∈�,!,…,/ 0 123)*42(5,� + 7()89: ;<(*=-4'&<(5,�>)?&2@&?&':5,�

A
5B�

 

(2) 

For each time of t makespan calculated by: 

(3) Makespan(t) = -2C�∈�,!,…,,/ D 7E5,�A5B�   

 

In the exploration phase and at the beginning of the 
optimization, the position of the hawks is randomly selected 
and the hawks are distributed in the entire search space 
according to equation (4). As a result, they increase the 
algorithm exploration power to find the global solution. Then 
the objective function calculates for each hawk and the hawk 
with the lowest value is select as the candidate and the position 
of the other hawks update according to the equation (4) [28]. 

F+' + 1,
= H F
IJK+', − 8�|F
IJK+', − 28!F+',|,                            N ≥ 0.5RF
ISS�T+', − FU+',V − 8WRXY + 8Z − +[Y − XY,V, N < 0.5 

  (4) 

In the equation: X(t+1) −location vector of harris hawks in 
the next repetition; 

Xrabbit (t) −location of prey(rabbit); 
X(t) −location vector of harris hawks, r1 to r4; 
q−random numbers in (0,1), that update in each repetition; 
LB and UB−upper bound and lower bound of decision variables 
that in this task scheduling problem are in order 1, M; 
Xrand(t) −Choose a hawk from prevalent population at random; 
Xm−average location of the hawks' prevalent population.  

The average position of hawks is attained using Eq. (5) [28]:  

(5) FU+', =  1] 0 F�+',A
�B�

 

 

In the equation Xi(t) shows each hawk position in repetition 
t and N illustrates total number of hawks. 

Based on escape energy of prey, the HHO algorithm 
changes from exploration phase to exploitation phase and 
between various exploitative behaviors. 

E indicates prey's escape energy. when |E| ≥1, exploration 
process happens, and  when |E| <1 exploitation process happens 
in later steps. In exploitation phase, if r <0.5, luck of prey 
escaping will be successful, and if r≥0.5, luck of prey escaping 
before surprise attack will not be successful [28]. 

When r ≥ 0.5 and |E| ≥ 0.5, Harris hawks’ position in soft 
besiege calculated by Eq. (6,7): 

(6) F+' + 1, =  ∆F+', − 7|2+1 − 8_F
ISS�T+', − F+',| 
(7) ∆F+', =  F
ISS�T+', − F+', 

 

In the equation: ∆X(t)− difference between rabbit position 
vector and current location in repetition t; 
r5− a random number in (0,1) [28]. 

When r ≥ 0.5 and |E| < 0.5, Harris hawks’ position in hard 
besiege calculated by Eq. (8): 

(8) 
 

F+' + 1, =  F
ISS�T+', − 7|∆F+',|  
The more intelligent way is when still |E| ≥ 0.5 but r < 0.5 a 

soft besiege is constructed before surprise attack. 

HHO supposed that the harris hawks can assess their next 
movement by Eq. (9): 

(9) ` =  F
ISS�T+', − 7|aF
ISS�T+', − F+',| 
 

This mean harris hawks start making abrupt, irregular, and 
rapid dives towards the prey using Eq. (10): 

(10) 
 

b = ` + c × Xd+e, 
In the equation: S−random vector by size 1 × D; 

D−dimension of problem; 
LF−levy fly function. 

LF can performed by Eq. (11,12) [28]: 

(11) Xd+C, = 0.01 × = ×  f
|	| �g  
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(12) 

f =  
⎝
⎛ Γ+1 +  k, ×  sin opk2 q

Γ o1 + k2 q ×  k ×  2ogr�! q⎠
⎞

�g
 

 

In the equation: u, v−random values in (0,1); 
(β = 1.5, a constant) 

In soft besiege, Eq. (13) is used to update location of the 
hawks: 

(13) F+' + 1, =  u`                  &� d+`, < d+F+',,b                  &� d+b, < d+F+',, 
 

When r < 0.5 and E < 0.5, before surprise jump, a hard 
besiege is performed by hawks. In this case, a situation similar 
to soft besiege is formed and hawks are trying to reduce their 
average distance with prey Eq. (13) [28]. Therefore, this 
process is repeated until stopping condition is maintained. 
Stopping condition in this research is to reach the 100th 
iteration. Then comes output of algorithm which is an optimum 
job scheduling. 

V. EVALUATION 

In this article, two workflow datasets including Montage 
and LIGO with sizes of 25, 50, 100, 1000  jobs (KB) taken from 
[29] are used as the tested dataset. Also, all programming has 
been done with MATLAB 2018b software on Windows 64-bit 
operating system and 5-core system. 

From the criteria of fitness function, reliability, makespan 
time and energy consumption to evaluate HHO and compare it 
with FA [30], PSO [31], and WOA [32] has been used. 

In TABLE I, fitness function value obtained by the 
algorithms for the two datasets used in this article (Montage and 
LIGO with different number of jobs) is shown. In this article, 
four PSO, FA, HHO and WOA algorithms are compared under 
the same conditions (same dataset, same fitness function, same 
number of iterations, same number of population members). 
Considering that our problem is a minimization problem, 
therefore, the lower fitness function value obtained by an 
algorithm, the algorithm provides better solutions. 

The four related algorithms obtain the optimization process 
to solve problems by using two phases of exploration and 
exploitation. Structure of four related algorithms is different 
from each other and each algorithm uses different operators to 
complete the two phases to perform optimization. Therefore, 
according to difference in structure of algorithms, output of 
each algorithm is definitely different from other algorithms. 

 
TABLE I. FITNESS FUNCTION RESULTS FROM ALGORITHMS FOR MONTAGE AND 

LIGO DATASETS (KB). 

Algorithm 
 

Montage25 Montage50 Montage100 Montage1000 

PSO 0.483 0.478 0.456 0.478 

FA 0.412 0.425 0.435 0.445 

WOA 0.398 0.380 0.395 0.411 

Algorithm 
 

Montage25 Montage50 Montage100 Montage1000 

HHO 0.322 0.342 0.350 0.389 

 

Algorithm 

 

LIGO25 LIGO50 LIGO100 LIGO1000 

PSO 0.476 0.477 0.456 0.467 

FA 0.438 0.446 0.435 0.427 

WOA 0.411 0.410 0.395 0.389 

HHO 0.398 0.382 0.350 0.365 

 
TABLE II. RELIABILITY (%) RESULTS FROM ALGORITHMS FOR FOR MONTAGE 

AND LIGO DATASETS (KB). 

Algorithm 
 

Montage25 Montage50 Montage100 Montage1000 

HHO 83 82 84 83 

WOA 78 77 79 79 

FA 75 75 75 76 

PSO 72 71 72 74 

 

Algorithm 
 

LIGO25 LIGO50 LIGO100 LIGO1000 

HHO 82 82 83 84 

WOA 78 77 79 81 

FA 74 74 76 78 

PSO 71 70 72 75 

 
According to TABLE I, HHO obtained a lower value of 

fitness function than other algorithms, then WOA obtained the 
lowest value of fitness function, then FA and then PSO. That is, 
PSO has obtained the worst performance in terms of obtaining 
fitness function value. 

TABLE II shows reliability value obtained for different 
algorithms on two datasets. According to what we described in 
previous paragraphs, the reliability value obtained by HHO is 
higher than other three algorithms, and reliability value 
obtained by PSO is the lowest. 

Fig. 3. displays reliability graph for Montage dataset and 
Fig. 4. displays reliability graph for LIGO dataset from TABLE 
II. According to obtained results, HHO has an average 
reliability of 83%. Meanwhile, average reliability for WOA, 
FA, and PSO is 78.75, 75.5, and 72, respectively. 
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Fig . 3. Reliability (%) plot for the Montage dataset 

 

 
Fig. 4. Reliability (%) plot for the LIGO dataset 

 
TABLE III shows the amount of energy used to execute 

different workflows by different algorithms. As can be seen 
from TABLE III, HHO consumed the least amount of energy 
and PSO consumed the most amount of energy. It should be 
noted that with the increase in the size of workflows (increasing 
the number of jobs in each workflow), the amount of energy 
used to execute them increases. After HHO, WOA consumed 
the least energy, followed by FA. 

Fig.5. shows energy consumption graph from TABLE III 
for the Montage dataset and in Fig. 6. energy consumption 
graph for LIGO dataset. According to obtained results, HHO 
has an average energy consumption of 14.95 kJ. While average 
energy consumption for WOA, FA and PSO is equal to 16.6, 
17.9 and 19.4, respectively. 

In TABLE IV, makespan time value obtained by different 
algorithms for two different datasets with different number of 
jobs is given. 

As shown in TABLE IV, the lowest value of makespan time 
is obtained by HHO, then WOA, then FA and then PSO. 
     Also, by increasing the number of jobs in each workflow, 
amount of makespan time obtained by each algorithm has also 
increased. 

 
 

TABLE III. ENERGY CONSUMPTION (KJ) RESULTS FROM ALGORITHMS FOR 

MONTAGE AND LIGO DATASETS (KB). 

Algorithm 
 

Montage25 Montage50 Montage100 Montage1000 

HHO 7.12 12.21 16.25 24.23 

WOA 8.35 13.85 18.64 25.56 

FA 9.50 15.10 19.98 27.04 

PSO 11.2 17.02 21.03 28.37 

 

Algorithm 
 

LIGO25 LIGO50 LIGO100 LIGO1000 

HHO 10.34 12.25 14.37 25.12 

WOA 11.62 13.47 15.64 27.36 

FA 12.75 14.56 16.76 28.97 

PSO 13.89 15.73 17.78 30.46 

 

 
 
Fig. 5. Energy Consumption graph for the Montage dataset 

 

 
Fig. 6. Energy Consumption chart for the LIGO dataset 

 
 
 
 

60

65

70

75

80

85

Montage25 Montage50 Montage100 Montage1000

R
e
li

a
b

il
it

y
 (

%
)

Montage (KB)

HHO WOA FA PSO

60

65

70

75

80

85

90

LIGO25 LIGO50 LIGO100 LIGO1000

R
e
li

a
b

il
it

y
 (

%
)

LIGO (KB)

HHO WOA FA PSO 0

20

40

60

80

100

120

Montage25 Montage50 Montage100 Montage1000

E
n

e
r
g

y
 C

o
n

su
m

p
ti

o
n

 (
 K

J
 )

 

Montage (KB)

HHO WOA FA PSO

0

20

40

60

80

100

120

LIGO30 LIGO50 LIGO100 LIGO1000

E
n

e
r
g

y
 C

o
n

su
m

p
ti

o
n

 (
 K

J
 )

 

LIGO (KB)

HHO WOA FA PSO

304



 

 
TABLE IV. MAKESPAN TIME (S) RESULTS FROM ALGORITHMS FOR MONTAGE  

AND LIGO DATASET (KB). 

Algorithm 
 

Montage25 Montage50 Montage100 Montage1000 

HHO 120 200 270 500 

WOA 150 225 290 525 

FA 175 240 315 550 

PSO 195 260 340 570 

 

Algorithm 
 

LIGO25 LIGO50 LIGO100 LIGO1000 

HHO 125 185 250 520 

WOA 145 200 275 550 

FA 160 215 290 585 

PSO 180 235 320 600 

 
Fig. 7. shows the makespan time plot from TABLE IV for 

the Montage dataset. The results show HHO has an average 
makespan time of 272.5 seconds. While average makespan time 
for WOA, FA and PSO is equal to 297.5, 320 and 341.25 
respectively. 
 

 
Fig. 7. Makespan Time chart for the Montage dataset 

 
Fig. 8. shows Makespan Time plot from TABLE IV for 

LIGO dataset. 
 

 
Fig. 8. Makespan Time diagram for the LIGO dataset 

Considering that HHO obtained better results in terms of 
makespan time, reliability, fitness function value and energy 
consumption value, we conclude that HHO has better 
performance than other algorithms. As mentioned earlier, this 
difference in value of results obtained by algorithms is related 
to structure of algorithms. The structure of HHO is such that it 
can get better results than PSO, FA and WOA. 

VI. CONCLUSION 

In this article, the optimization algorithm of Harris Hawks 
was used as an optimization algorithm to optimize workflow 
scheduling problem in cloud-fog environment. The three 
criteria of energy consumption, reliability and makespan time 
were used as main criteria to determine fitness function, and 
final fitness function was obtained from combination of these 
three criteria. Finally, Harris Hawks algorithm was able to 
determine the best and most optimal virtual machines for 
workflows by using the minimization of fitness function, so that 
the lowest energy consumption, highest reliability and the 
lowest amount of makespan time are compared to firefly and 
whale algorithms and obtain a swarm of particles. 
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