
12th International Conference on Computer and Knowledge Engineering (ICCKE 2022), November 17-18, 2022, Ferdowsi University of Mashhad, Iran

An optimal workflow scheduling method in cloud-

fog computing using three-objective Harris-Hawks

algorithm

Ahmadreza Montazerolghaem
Department of Computer Engineering

University of Isfahan
Isfahan, Iran

a.montazerolghaem@comp.ui.ac.ir

Maryam Khosravi
Department of Computer Engineering

University of Isfahan
Isfahan, Iran

maryam.khosravi@eng.ui.ac.ir

Fatemeh Rezaee
Department of Computer Engineering

University of Isfahan
Isfahan, Iran

fatemeh.rezaee@eng.ui.ac.ir

Mohammad Reza Khayyambashi
Department of Computer Engineering

University of Isfahan
Isfahan, Iran

m.r.khayyambashi@eng.ui.ac.ir

Abstract— Today, the Internet of Things (IoT) use to collect

data by sensors, and store and process them. As the IoT has limited

processing and computing power, we are turning to integration of

cloud and IoT. Cloud computing processes large data at high

speed, but sending this large data requires a lot of bandwidth.

Therefore, we use fog computing, which is close to IoT devices. In

this case, the delay is reduced. Both cloud and fog computing are

used to increasing performance of IoT. Job scheduling of IoT

workflow requests based on cloud-fog computing plays a key role

in responding to these requests. Job scheduling in order to reduce

makespan time, is very important in realtime system. Also, one

way to improve system performance is to reduce energy

consumption. In this article, three-objective Harris Hawks

Optimizer (HHO) scheduling algorithm is proposed in order to

reduce makespan time, energy consumption and increase

reliability. Also, dynamic voltage frequency scaling (DVFS) has

been used to reduce energy consumption, which reduces frequency

of the processor. Then HHO is compared with other algorithms

such as Whale Optimization Algorithm (WOA), Firefly Algorithm

(FA) and Particle Swarm Optimization (PSO) and proposed

algorithm shows better performance on experimental data. The

proposed method has achieved an average reliability of 83%,

energy consumption of 14.95 KJ, and makespan of 272.5 seconds.

Keywords—Internet of Things; Cloud-Fog computing; Harris

hawks optimization algorithm; Workflow scheduling; DVFS

I. INTRODUCTION

The concept of IoT was first presented by Kevin Ashton [1]
in 1999. Purpose of IoT is to collect environmental data through
sensors and store and process them automatically [2,3]. IoT
suffers from problems such as performance, security, privacy
and reliability due to processing and storage power. Therefore,
to solve these problems, we move towards cloud computing.
Cloud computing processes huge amounts of data quickly and

cheaply. To send this large data to the cloud, a lot of bandwidth
is needed, and fog computing is used to solve this problem [4,5].
Like cloud computing, fog computing processes and stores data
collected by sensors [6]. To reduce latency and network traffic
volume in the cloud, data is temporarily processed and stored
on network edge devices [7]. Fog computing has many
advantages, including geographical distribution and large scale,
lower operational costs, flexibility and heterogeneity and
scalability, low latency [8]. In Fig. 1, cloud computing is first
substrate, where cloud servers store and process large volumes
of data. In next substrate, there is fog computing, which consists
of fog machines. The bottom substrate contains the end devices
of the IoT. Fog computing is a mediation between terminal
devices and the cloud and it brings several services near to the
terminal devices [8,26]. Each fog server is a virtual machine.
To manage fog virtual resources, we use fog scheduling, which
in addition to providing QOS, minimizes makespan, resource
conception, and data transfer [18,19]. But scheduling jobs and
workflow is an NP-hard problem [20]. Job scheduling in order
to reduce makespan time, is very important in realtime system.
Also, reducing the energy consumption improves system
performance.

Therefore, in this contribution, an optimal workflow
scheduling method is presented using three-objective HHO
algorithm. In this schedule, we considered factors of makespan
time, reliability, and energy consumption. DVFS are used to
decrease energy consumption. DFVS is a method to reduce
energy consumption by reducing processor frequency [21,22].

This paper is organized as follows: part II will review the
previous works, part III presents system model and formulated
job scheduling problem, part IV presents our method based on
HHO algorithm, in part V presented evaluations and compared

300

20
22

 1
2t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

pu
te

r a
nd

 K
no

w
le

dg
e

En
gi

ne
er

in
g

(I
C

C
K

E)
 |

97
8-

1-
66

54
-7

61
3-

3/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

C
K

E5
71

76
.2

02
2.

99
60

12
3

978-1-6654-7613-3/22/$31.00 ©2022 IEEE

our proposed method with several Meta-Heuristic (MH)
algorithms such as WOA, FA and PSO.

The MH algorithms such as HHO [23], Artificial Bee
Colony (ABC) [24], and Grasshopper Optimization Algorithm
(GOA) [25] have been used to solve various problems.

Fig. 1. Cloud-fog environment architecture[26]

II. RELATED WORK

 The authors in [9] have developed a hybrid optimization
algorithm called AEOSSA in cloud-fog environment. This
algorithm was a combination of two algorithms, AEO and SSA,
and its purpose is to reduce throughput time and makespan time.
Then AEOSSA is compared with four algorithms SSA and
AEO, PSO, FA on the two mentioned criteria and has shown
better performance. In [10], genetic algorithm (GA) was used
to minimize overall latency to schedule IoT jobs in the cloud-
fog environment. The performance of GA has been better than
that of Round Robin (RR), Priority-Strict Queuing (PSQ) and
Wait-Fair Queuing (WFQ). techniques in reducing overall
latency. The authors in [11] have created an optimal task
offloading strategy for delay-sensitive and resource-sensitive
programs in the cloud-fog environment, which uses the FA to
reduce energy consumption and computational time. This
method was compared with optimization algorithms such as
PSO in terms of temperature emission, CO2 emission, energy
consumption, and computational time, which has shown better
performance. In [12], the Enhanced version of Multi-Verse
Optimizer (EMVO) algorithm was presented for scheduling
jobs in the cloud to achieve minimized makespan time and
increase resources efficiency, and it was compared with two
algorithms, MVO and PSO, which shown that the algorithm has
a better performance. In [13], an optimization model using
mixed integer programming for minimizing deadline misses of
IoT tasks in the cloud environment using GA was introduced.
Then the performance of GA was compared with priority
scheduling and RR, which has shown better performance. In
[14], a hybrid deep Q-learning task scheduling (DQTS)
algorithm combining Q-learning and Artificial Neural Network
(ANN) is presented for scheduling jobs in cloud. According to
obtained results, the presented algorithm has less makespan and

better load balance. The necessary requirements of fog
computing that provides high-quality IoT services is efficient
resource management. Job management and workflow are
considered practical examples of resource management in fog
computing environment for assigning a set of requested jobs to
most suitable fog node [15-17]. None of the previous works
have investigated the three parameters of Makespan time,
reliability and energy consumption at the same time.

III. SYSTEM MODEL

A. System Model

Cloud-fog architecture has three substrates, as represented
in Fig. 1. The edge substrate receives user requests through IoT
devices. Then it sends the information to the fog substrate,
which has fog nodes. Fog nodes process user requests. In this
architecture, it is the cloud top substrate that provides
outsourcing resources to execute workflows derived from the
fog substrate. There is a smart gateway or broker in the fog
substrate, that receives user requests and manages resources
available in cloud and fog nodes, processing and
communication costs, and the search results of data return from
nodes and create most suitable workflow scheduling [26].

B. Problem Formulation

In this part, the formulation of the problem for job
scheduling in cloud-fog is described.

The cloud-fog system consist of a set of M heterogeneous
virtual machines denoted by VM ={v1 ,v2, … . . ,vM}. Each v is
physical processor that works in various frequency levels and
voltage and is determined {SV, c, f} supply voltage, maximum
processor processing capacity, and frequency level.

The workflow is set of jobs, denoted by � and model by a
Directed Acyclic Graph (DAG). J = {J1,J2, … . .,JN} illustrates
a set of N related jobs of workflow. E illustrates set of edges
between jobs and is N*M.

Each job consists of several instructions per million units to
executed and a collection of predecessors and successors. As
shown in Fig. 2, The entry job for DAG has Pred (J�����)=Ф
and the exit job has Succ(J����)=Ф. Each edge ei,j Є E shows the
graft between Ji and Jj , which has weight Wi,j, illustrates the
amount of data need to be exchanged between job Ji and Jj
[22,27].

Fig. 2. DAG of workflow[27]

301

Each job is allocated to a VM with a special frequency. The
execution time of job Ji allocated to 	
�� is represented by:

(1) ET = �����
× 	
����	
��

In the equation: Ii−number of instructions that need to
execute for Ji; ��� −maximum capacity of 	
 in MIPS; 	
���� −maximum frequency level for 	
; 	
�� −frequency level �� that has any value from � = ���, �!, … . . , �$% for 	
 .

Now we use DVFS to reduce energy consumption by
reducing frequency [16].

DVFS is a mechanism that decreases energy consumption
by reducing the CPU frequency level of VM and uses a
powerful management technique to decrease energy
consumption and high reliability. To maintain reliability. It uses
a powerful management technique to decrease energy
consumption and high reliability [16].

IV. PROPOSED METHOD BASED ON HARRIS HAWKS

OPTIMIZATION

HHO is a population-based MH algorithm. MH algorithms
mimic natural phenomena [28]. MH algorithms include two
phases: exploration and exploitation. To schedule jobs, we use
the three-objective HHO algorithm to minimizing makespan
and energy consumption and increasing reliability. A candidate
solution in the optimization problem was considered for each
hawk [28].

�&'()**+',
= -&(�∈�,!,…,/ 0 123)*42(5,� + 7()89: ;<(*=-4'&<(5,�>)?&2@&?&':5,�

A
5B�

(2)

For each time of t makespan calculated by:

(3) Makespan(t) = -2C�∈�,!,…,,/ D 7E5,�A5B�

In the exploration phase and at the beginning of the
optimization, the position of the hawks is randomly selected
and the hawks are distributed in the entire search space
according to equation (4). As a result, they increase the
algorithm exploration power to find the global solution. Then
the objective function calculates for each hawk and the hawk
with the lowest value is select as the candidate and the position
of the other hawks update according to the equation (4) [28].

F+' + 1,
= H F
IJK+', − 8�|F
IJK+', − 28!F+',|, N ≥ 0.5RF
ISS�T+', − FU+',V − 8WRXY + 8Z − +[Y − XY,V, N < 0.5

 (4)

In the equation: X(t+1) −location vector of harris hawks in
the next repetition;

Xrabbit (t) −location of prey(rabbit);
X(t) −location vector of harris hawks, r1 to r4;
q−random numbers in (0,1), that update in each repetition;
LB and UB−upper bound and lower bound of decision variables
that in this task scheduling problem are in order 1, M;
Xrand(t) −Choose a hawk from prevalent population at random;
Xm−average location of the hawks' prevalent population.

The average position of hawks is attained using Eq. (5) [28]:

(5) FU+', = 1] 0 F�+',A
�B�

In the equation Xi(t) shows each hawk position in repetition
t and N illustrates total number of hawks.

Based on escape energy of prey, the HHO algorithm
changes from exploration phase to exploitation phase and
between various exploitative behaviors.

E indicates prey's escape energy. when |E| ≥1, exploration
process happens, and when |E| <1 exploitation process happens
in later steps. In exploitation phase, if r <0.5, luck of prey
escaping will be successful, and if r≥0.5, luck of prey escaping
before surprise attack will not be successful [28].

When r ≥ 0.5 and |E| ≥ 0.5, Harris hawks’ position in soft
besiege calculated by Eq. (6,7):

(6) F+' + 1, = ∆F+', − 7|2+1 − 8_F
ISS�T+', − F+',|
(7) ∆F+', = F
ISS�T+', − F+',

In the equation: ∆X(t)− difference between rabbit position
vector and current location in repetition t;
r5− a random number in (0,1) [28].

When r ≥ 0.5 and |E| < 0.5, Harris hawks’ position in hard
besiege calculated by Eq. (8):

(8)

F+' + 1, = F
ISS�T+', − 7|∆F+',|
The more intelligent way is when still |E| ≥ 0.5 but r < 0.5 a

soft besiege is constructed before surprise attack.

HHO supposed that the harris hawks can assess their next
movement by Eq. (9):

(9) ` = F
ISS�T+', − 7|aF
ISS�T+', − F+',|

This mean harris hawks start making abrupt, irregular, and
rapid dives towards the prey using Eq. (10):

(10)

b = ` + c × Xd+e,
In the equation: S−random vector by size 1 × D;

D−dimension of problem;
LF−levy fly function.

LF can performed by Eq. (11,12) [28]:

(11) Xd+C, = 0.01 × = × f
|	| �g

302

(12)

f =
⎝
⎛ Γ+1 + k, × sin opk2 q

Γ o1 + k2 q × k × 2ogr�! q⎠
⎞

�g

In the equation: u, v−random values in (0,1);
(β = 1.5, a constant)

In soft besiege, Eq. (13) is used to update location of the
hawks:

(13) F+' + 1, = u` &� d+`, < d+F+',,b &� d+b, < d+F+',,

When r < 0.5 and E < 0.5, before surprise jump, a hard
besiege is performed by hawks. In this case, a situation similar
to soft besiege is formed and hawks are trying to reduce their
average distance with prey Eq. (13) [28]. Therefore, this
process is repeated until stopping condition is maintained.
Stopping condition in this research is to reach the 100th
iteration. Then comes output of algorithm which is an optimum
job scheduling.

V. EVALUATION

In this article, two workflow datasets including Montage
and LIGO with sizes of 25, 50, 100, 1000 jobs (KB) taken from
[29] are used as the tested dataset. Also, all programming has
been done with MATLAB 2018b software on Windows 64-bit
operating system and 5-core system.

From the criteria of fitness function, reliability, makespan
time and energy consumption to evaluate HHO and compare it
with FA [30], PSO [31], and WOA [32] has been used.

In TABLE I, fitness function value obtained by the
algorithms for the two datasets used in this article (Montage and
LIGO with different number of jobs) is shown. In this article,
four PSO, FA, HHO and WOA algorithms are compared under
the same conditions (same dataset, same fitness function, same
number of iterations, same number of population members).
Considering that our problem is a minimization problem,
therefore, the lower fitness function value obtained by an
algorithm, the algorithm provides better solutions.

The four related algorithms obtain the optimization process
to solve problems by using two phases of exploration and
exploitation. Structure of four related algorithms is different
from each other and each algorithm uses different operators to
complete the two phases to perform optimization. Therefore,
according to difference in structure of algorithms, output of
each algorithm is definitely different from other algorithms.

TABLE I. FITNESS FUNCTION RESULTS FROM ALGORITHMS FOR MONTAGE AND

LIGO DATASETS (KB).

Algorithm

Montage25 Montage50 Montage100 Montage1000

PSO 0.483 0.478 0.456 0.478

FA 0.412 0.425 0.435 0.445

WOA 0.398 0.380 0.395 0.411

Algorithm

Montage25 Montage50 Montage100 Montage1000

HHO 0.322 0.342 0.350 0.389

Algorithm

LIGO25 LIGO50 LIGO100 LIGO1000

PSO 0.476 0.477 0.456 0.467

FA 0.438 0.446 0.435 0.427

WOA 0.411 0.410 0.395 0.389

HHO 0.398 0.382 0.350 0.365

TABLE II. RELIABILITY (%) RESULTS FROM ALGORITHMS FOR FOR MONTAGE

AND LIGO DATASETS (KB).

Algorithm

Montage25 Montage50 Montage100 Montage1000

HHO 83 82 84 83

WOA 78 77 79 79

FA 75 75 75 76

PSO 72 71 72 74

Algorithm

LIGO25 LIGO50 LIGO100 LIGO1000

HHO 82 82 83 84

WOA 78 77 79 81

FA 74 74 76 78

PSO 71 70 72 75

According to TABLE I, HHO obtained a lower value of

fitness function than other algorithms, then WOA obtained the
lowest value of fitness function, then FA and then PSO. That is,
PSO has obtained the worst performance in terms of obtaining
fitness function value.

TABLE II shows reliability value obtained for different
algorithms on two datasets. According to what we described in
previous paragraphs, the reliability value obtained by HHO is
higher than other three algorithms, and reliability value
obtained by PSO is the lowest.

Fig. 3. displays reliability graph for Montage dataset and
Fig. 4. displays reliability graph for LIGO dataset from TABLE
II. According to obtained results, HHO has an average
reliability of 83%. Meanwhile, average reliability for WOA,
FA, and PSO is 78.75, 75.5, and 72, respectively.

303

Fig . 3. Reliability (%) plot for the Montage dataset

Fig. 4. Reliability (%) plot for the LIGO dataset

TABLE III shows the amount of energy used to execute

different workflows by different algorithms. As can be seen
from TABLE III, HHO consumed the least amount of energy
and PSO consumed the most amount of energy. It should be
noted that with the increase in the size of workflows (increasing
the number of jobs in each workflow), the amount of energy
used to execute them increases. After HHO, WOA consumed
the least energy, followed by FA.

Fig.5. shows energy consumption graph from TABLE III
for the Montage dataset and in Fig. 6. energy consumption
graph for LIGO dataset. According to obtained results, HHO
has an average energy consumption of 14.95 kJ. While average
energy consumption for WOA, FA and PSO is equal to 16.6,
17.9 and 19.4, respectively.

In TABLE IV, makespan time value obtained by different
algorithms for two different datasets with different number of
jobs is given.

As shown in TABLE IV, the lowest value of makespan time
is obtained by HHO, then WOA, then FA and then PSO.
 Also, by increasing the number of jobs in each workflow,
amount of makespan time obtained by each algorithm has also
increased.

TABLE III. ENERGY CONSUMPTION (KJ) RESULTS FROM ALGORITHMS FOR

MONTAGE AND LIGO DATASETS (KB).

Algorithm

Montage25 Montage50 Montage100 Montage1000

HHO 7.12 12.21 16.25 24.23

WOA 8.35 13.85 18.64 25.56

FA 9.50 15.10 19.98 27.04

PSO 11.2 17.02 21.03 28.37

Algorithm

LIGO25 LIGO50 LIGO100 LIGO1000

HHO 10.34 12.25 14.37 25.12

WOA 11.62 13.47 15.64 27.36

FA 12.75 14.56 16.76 28.97

PSO 13.89 15.73 17.78 30.46

Fig. 5. Energy Consumption graph for the Montage dataset

Fig. 6. Energy Consumption chart for the LIGO dataset

60

65

70

75

80

85

Montage25 Montage50 Montage100 Montage1000

R
e
li

a
b

il
it

y
 (

%
)

Montage (KB)

HHO WOA FA PSO

60

65

70

75

80

85

90

LIGO25 LIGO50 LIGO100 LIGO1000

R
e
li

a
b

il
it

y
 (

%
)

LIGO (KB)

HHO WOA FA PSO 0

20

40

60

80

100

120

Montage25 Montage50 Montage100 Montage1000

E
n

e
r
g

y
 C

o
n

su
m

p
ti

o
n

 (
 K

J
)

Montage (KB)

HHO WOA FA PSO

0

20

40

60

80

100

120

LIGO30 LIGO50 LIGO100 LIGO1000

E
n

e
r
g

y
 C

o
n

su
m

p
ti

o
n

 (
 K

J
)

LIGO (KB)

HHO WOA FA PSO

304

TABLE IV. MAKESPAN TIME (S) RESULTS FROM ALGORITHMS FOR MONTAGE

AND LIGO DATASET (KB).

Algorithm

Montage25 Montage50 Montage100 Montage1000

HHO 120 200 270 500

WOA 150 225 290 525

FA 175 240 315 550

PSO 195 260 340 570

Algorithm

LIGO25 LIGO50 LIGO100 LIGO1000

HHO 125 185 250 520

WOA 145 200 275 550

FA 160 215 290 585

PSO 180 235 320 600

Fig. 7. shows the makespan time plot from TABLE IV for

the Montage dataset. The results show HHO has an average
makespan time of 272.5 seconds. While average makespan time
for WOA, FA and PSO is equal to 297.5, 320 and 341.25
respectively.

Fig. 7. Makespan Time chart for the Montage dataset

Fig. 8. shows Makespan Time plot from TABLE IV for

LIGO dataset.

Fig. 8. Makespan Time diagram for the LIGO dataset

Considering that HHO obtained better results in terms of
makespan time, reliability, fitness function value and energy
consumption value, we conclude that HHO has better
performance than other algorithms. As mentioned earlier, this
difference in value of results obtained by algorithms is related
to structure of algorithms. The structure of HHO is such that it
can get better results than PSO, FA and WOA.

VI. CONCLUSION

In this article, the optimization algorithm of Harris Hawks
was used as an optimization algorithm to optimize workflow
scheduling problem in cloud-fog environment. The three
criteria of energy consumption, reliability and makespan time
were used as main criteria to determine fitness function, and
final fitness function was obtained from combination of these
three criteria. Finally, Harris Hawks algorithm was able to
determine the best and most optimal virtual machines for
workflows by using the minimization of fitness function, so that
the lowest energy consumption, highest reliability and the
lowest amount of makespan time are compared to firefly and
whale algorithms and obtain a swarm of particles.

REFERENCES

[1] K. Ashton, “That ‘Internet of Things’ Thing,” RFiD J., 2009, pp. 49–86

[2] Giang, N.; Kim, S.; Kim, D.; Jung, M.; Kastner, W. Extending the EPCIS
with Building Automation Systems: A New Information System for the
Internet of Things. In Proceedings of the 2014 Eighth International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, Birmingham, UK, 2–4 July 2014; pp. 364–369.

[3] Atlam, H.F.; Alenezi, A.; Hussein, R.K.; Wills, G.B. Validation of an
Adaptive Risk-Based Access Control Model for the Internet of Things.
Int. J. Comput. Netw. Inf. Secur. 2018, 10, 26–35. [CrossRef]
performance, security, privacy and reliability

[4] Atlam, H.F.; Alenezi, A.; Alharthi, A.; Walters, R.; Wills, G. Integration
of cloud computing with internet of things: challenges and open issues. In
Proceedings of the 2017 IEEE International Conference on Internet of
Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), Exeter, UK, 21–23 June 2017; pp.
670–675.

[5] Ai, Y.; Peng, M.; Zhang, K. Edge cloud computing technologies for
internet of things: A primer.Digit. Commun. Netw. 2017, in press.

[6] Peter, N. FOG Computing and Its Real Time Applications. Int. J. Emerg.
Technol. Adv. Eng. 2015, 5, 266–269.

[7] Wen, Z.; Yang, R.; Garraghan, P.; Lin, T.; Xu, J.; Rovatsos, M. Fog
orchestration for internet of things services. IEEE Internet Comput. 2017,
21, 16–24.

[8] H. F. Atlam, R. J. Walters, and G. B. Wills, "Fog computing and the
internet of things: A review," big data and cognitive computing, vol. 2,
no. 2, p. 10, 2018.

[9] Abd Elaziz, M., Abualigah, L. and Attiya, I., 2021. Advanced
optimization technique for scheduling IoT tasks in cloud-fog computing
environments. Future Generation Computer Systems, 124, pp.142-154.

[10] Aburukba, R.O., AliKarrar, M., Landolsi, T. and El-Fakih, K., 2020.
Scheduling Internet of Things requests to minimize latency in hybrid
Fog–Cloud computing. Future Generation Computer Systems, 111,
pp.539-551.

[11] Adhikari, M. and Gianey, H., 2019. Energy efficient offloading strategy
in fog-cloud environment for IoT applications. Internet of Things, 6,
p.100053.

[12] Shukri, S.E., Al-Sayyed, R., Hudaib, A. and Mirjalili, S., 2021. Enhanced
multi-verse optimizer for task scheduling in cloud computing
environments. Expert Systems with Applications, 168, p.114230.

0

100

200

300

400

500

600

Montage25 Montage50 Montage100 Montage1000

M
a

k
e
sp

a
n

 T
im

e
 (

s)

Montsge (KB)

HHO WOA FA PSO

0

100

200

300

400

500

600

700

LIGO25 LIGO50 LIGO100 LIGO1000

M
a

k
e
sp

a
n

 T
im

e
 (

s)

LIGO (KB)

HHO WOA FA PSO

305

[13] Aburukba, R.O., Landolsi, T. and Omer, D., 2021. A heuristic scheduling

approach for fog-cloud computing environment with stationary IoT
devices. Journal of Network and Computer Applications, 180, p.102994.

[14] Tong, Z., Chen, H., Deng, X., Li, K. and Li, K., 2020. A scheduling
scheme in the cloud computing environment using deep Q-learning.
Information Sciences, 512, pp.1170-1191.

[15] L. Yin, J. Luo, and H. Luo, "Tasks scheduling and resource allocation in
fog computing based on containers for smart manufacturing," IEEE
Transactions on Industrial Informatics, vol. 14, pp. 4712‐4721, 2018.

[16] O. H. Ahmed, J. Lu, A. M. Ahmed, A. M. Rahmani, M. Hosseinzadeh,
and M. Masdari, "Scheduling of Scientific Workflows in Multi‐Fog
Environments Using Markov Models and a Hybrid Salp Swarm
Algorithm," IEEE Access, vol. 8, pp. 189404‐189422, 2020.

[17] D. Tychalas and H. Karatza, "A scheduling algorithm for a fog computing
system with bag‐oftasks jobs: Simulation and performance evaluation,"
Simulation Modelling Practice and Theory, vol. 98, p. 101982, 2020.

[18] J. C. Guevara and N. L. da Fonseca, "Task scheduling in cloud‐fog
computing systems," Peer‐to‐Peer Networking and Applications, vol. 14,
pp. 962‐977, 2021.

[19] A. Arunarani, D. Manjula, and V. Sugumaran, "Task scheduling
techniques in cloud computing: A literature survey," Future Generation
Computer Systems, vol. 91, pp. 407‐415, 2019.

[20] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, "Fog computing for
energy‐aware load balancing and scheduling in smart factory," IEEE
Transactions on Industrial Informatics, vol. 14, pp. 4548‐4556, 2018.

[21] Ahmed, O.H., Lu, J., Xu, Q., Ahmed, A.M., Rahmani, A.M. and
Hosseinzadeh, M., 2021. Using differential evolution and Moth–Flame
optimization for scientific workflow scheduling in fog computing.
Applied Soft Computing, 112, p.107744.

[22] Hassan, H.A., Salem, S.A. and Saad, E.M., 2020. A smart energy and
reliability aware scheduling algorithm for workflow execution in DVFS-
enabled cloud environment. Future Generation Computer Systems, 112,
pp.431-448.

[23] Raziani, S.; Salehnia, T.; Ahmadi, M. Selecting of the best features for
the knn classification method by Harris Hawk algorithm. In Proceedings
of the 8th International Conference on New Strategies in Engineering,
Information Science and Technology in the Next Century, Dubai, United
Arab Emirates (UAE), 2021; Available online:
https://civilica.com/doc/1196573/ (accessed on 16 March 2022).

[24] Salehnia, T., Fath, A., 2021, Fault tolerance in LWT-SVD based image
watermarking systems using three module redundancy technique. Expert
Systems with Applications. 179, 115058.

[25] Salehnia, T.; Izadi, S.; Ahmadi, M. Multilevel image thresholding using
GOA, WOA and MFO for image segmentation. In Proceedings of the 8th
International Conference on New Strategies in Engineering, Information
Science and Technology in the Next Century, Dubai, United Arab
Emirates (UAE), 2021; Available online:
https://civilica.com/doc/1196572/ (accessed on 16 March 2022).

[26] Pham, X.Q. and Huh, E.N., 2016, October. Towards task scheduling in a
cloud-fog computing system. In 2016 18th Asia-Pacific network
operations and management symposium (APNOMS) (pp. 1-4). IEEE.

[27] Guevara, J.C. and da Fonseca, N.L., 2021. Task scheduling in cloud-fog
computing systems. Peer-to-Peer Networking and Applications, 14(2),
pp.962-977.

[28] Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M. and Chen,
H., 2019. Harris hawks optimization: Algorithm and applications. Future
generation computer systems, 97, pp.849-872.

[29] https://confluence.pegasus.isi.edu/display/pegasus/Deprecated+Workflo
w+Generator.

[30] X.-S. Yang, “Firefly algorithms for multimodal optimization”,
Foundations and Applications, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 169–178, 2009.

[31] J. Kennedy, R. Eberhart, “Particle swarm optimization”, International
Conference on Neural Networks, vol. 4, pp. 1942–1948, 1995.

[32] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances
in engineering software, vol. 95, pp. 51-67, 2016.

306

